Bac 2023, métropole : sujet 1

Exercice 1 : QCM probabilités

5 points

1.
$$p_G(D) = \frac{P(D \cap G)}{P(G)} = \frac{0,002}{0,2} = 0,01$$

Réponse b.

- 2. D'après la formule des probas totales $p(D) = P(D \cap G) + P(D \cap \overline{G})$ donc $P(D \cap \overline{G}) = P(D) P(D \cap G) = 0,082 0,002 = 0,08$. Réponse b.
- 3. On cherche à calculer $p_D(G)$ soit $\frac{P(D \cap G)}{P(D)} = \frac{0.2}{8.2} \approx 0.0244$

Réponse b.

- 4. En utilisant le calculatrice $p(X>2)=1-p(X\leq 2)\approx 0,789$ Réponse b.
- **5.** $p(X=0)=0,918^n$, on cherche n tel que $0,918^n \geq 0.4$ soit $n \leq \frac{\ln(0,4)}{\ln(0,918)}$ **Réponse c.**

Exercice 2: Fonctions

5 points

- 1. $\lim_{x\to 0} -8\ln(x) = +\infty$ et $\lim_{x\to 0} x^2 = 0$ alors $\lim_{x\to 0} f(x) = +\infty$
- 2. D'après les croissances comparées $\lim_{x\to +\infty}\frac{\ln(x)}{x^2}=0$, or $\lim_{x\to +\infty}x^2=+\infty$ donc $\lim_{x\to +\infty}f(x)=+\infty$
- 3. Sur $]0; +\infty[$ les deux fonctions carrée et logarithme sont dérivables en utilisant la formule de la somme de deux dérivés on obtient :

$$f'(x) = 2x - \frac{8}{x} = \frac{2x^2 - 8}{x} = \frac{2(x^2 - 4)}{x}$$

4. $(x^2-4)=(x+2)(x-2)$ Sur $]0;+\infty[$ (x^2-4) est du signe de (x-2), on a donc le tableau de variation suivant :

x	0		2		$+\infty$
f'(x)		_	0	+	
f(x)	$+\infty$	4-8	$3\ln(2) \approx -$	-1.55	, +∞

- 5. La fonction f est continue sur [1;2] car elle est dérivable, elle est strictement croissante de plus f(1) = 1 > 0 et $f(2) \approx -1,55 < 0$.
 - D'après le corollaire du théorème des valeurs intermédiaires, il existe un unique α sur [1;2] tel que $f(\alpha) = 0$ Pour 0 < x < 1, f(x) > f(1) car f est décroissante. On a donc bien le résultat demandé.
- **6.** Comme f est décroissante sur]0;2] et $f(\alpha)=0$, f est positive sur $]0;\alpha]$ puis négative sur $[\alpha;2]$. Comme f est croissante sur $]2;+\infty]$ et $f(\beta)=0$, f est négative sur $[2;\beta]$ puis positive $[\beta;+\infty]$.
- 7. Sur $]0; +\infty[$, on a $g'_k(x) = f'(x)$ donc f et g_k ont un tableau de variation similaire seule la valeur du minimum change ici le minimum de g_k est $4 8\ln(2) + k$.

Donc g_k est toujours positive si et seulement si son minimum est positif soit pour $k = 8 \ln(2) - 4$

Exercice 3: Suites

Partie A

1. $u_2 = 0, 9 \times 3 + 1, 3 = 4$ et $u_3 = 0, 9 \times 4 + 1, 3 = 4, 9$

Au deuxième mois il y a 400 questions sur la faq et au cours du troisième 490.

2. Posons \mathcal{P}_n la propriété : " $u_n = 13 - \frac{100}{9} \times 0.9^n$ "

Initialisation: $13 - \frac{100}{9} \times 0$, $9^1 = 13 - 10 = 3$ donc \mathcal{P}_0 est vraie.

Hérédité : Supposons qu'il existe un $n \in \mathbb{N}$ tel que \mathcal{P}_n soit vraie.

Démontrons que \mathcal{P}_{n+1} est vraie.

 $u_{n+1} = 0, 9 \times u_n + 1, 3 = 0.9 \times (13 - \frac{100}{9} \times 0, 9^n) + 1, 3$ d'après l'hypothèse de récurrence

En développant, on obtient $u_{n+1} = 11, 7 - \frac{100}{9} \times 0.9^{n+1} + 1, 3 = 13 - \frac{100}{9} \times 0.9^{n+1}$.

Donc \mathcal{P}_{n+1} est vraie.

Conclusion : Par récurrence sur n, pour tout entier $n \geq 1$, \mathcal{P}_n est vraie.

- 3. Cherchons le signe de $u_{n+1} u_n$, $u_{n+1} u_n = -\frac{100}{9} \times (0, 9^{n+1} 0, 9^n) = -\frac{100}{9} \times 0, 9^n \times (0, 9 1)$ Deux des trois facteurs de l'expression précédente sont négatifs et un est positif donc cette différence est positive, la suite est donc croissante.
- 4. En utilisant le calculatrice, on s'aperçoit que le seuil est atteint pour n=9, au neuvième mois il y aura plus de 850 questions dans la FAQ

Partie B

- 1. A l'aide de la calculatrice on obtient $v_1 = 3$ et $v_2 \approx 4,04$
- **2.** On cherche *n* tel que $v_n > 8, 5$, soit $6 \times e^{-0.19(n-1)} < 0.5$.

En utilisant la fonction logarithme, on obtient $-0.19(n-1) < -\ln(12)$ soit $n > \frac{100\ln(12)}{19} + 1$ Soit pour $n \ge 15$

Partie C

- 1. C'est la première solution qui permet cela d'après les questions précédentes (atteint pour n=9 au lieu de n=15)
- **2.** Comme $0, 9^n$ tend vers zéro quand n tend vers l'infini on peut dire que la suite u_n tend vers 13 quand n tend vers l'infini.

Comme e^{-n} tend vers 0 quand n tend vers l'infini la seconde suite v_n tend vers 9 quand n tend vers l'infini comme limite de composition de fonction.

La première modélisation aura donc à long terme le plus grand nombre de questions

Exercice 4 : Géométrie

5 points

- 1. E a pour coordonnées (0;0;1), C (1;1;0) et G(1;1;1)
- **2.** \overrightarrow{EC} a pour coordonnées $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ et E (0;0;1)

donc l'équation paramétrique de (EC) est : $\begin{cases} x &= t \\ y &= t \\ z &= 1-t \end{cases}$ avec $t \in \mathbb{R}$

3. Démontrons \overrightarrow{EC} est orthogonal à deux vecteurs non colinéaires du plan (GBD) : \overrightarrow{DG} et \overrightarrow{BG} .

$$\overrightarrow{DG}$$
 a pour coordonnées $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ et $\overrightarrow{EC} \cdot \overrightarrow{DG} = 1 \times 1 + 1 \times 0 + (-1) \times 1 = 0$

donc \overrightarrow{EC} est orthogonal à \overrightarrow{DG}

$$\overrightarrow{BG}$$
 a pour coordonnées $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ et $\overrightarrow{EC}\cdot\overrightarrow{DG}=1\times 0+1\times 1+(-1)\times 1=0$

donc \overrightarrow{EC} est orthogonal à \overrightarrow{BG}

Donc la droite (EC) est bien orthogonale au plan (BDG)

a. \overrightarrow{EC} étant d'après la question précédente un vecteur normal du plan (BDG) sont équation cartésienne est donc de la forme x + y - z + d = 0.

Or G appartient à ce plan donc ces coordonnées sont solutions de cette équation.

$$1+1-1+d=0$$
 soit $d=-1$.

b. I(x;y;z) vérifie le système suivant : $\begin{cases} x &= t \\ y &= t \\ z &= 1-t \end{cases}$ avec $t \in \mathbb{R}$ et de plus x+y-z-1=0 donc t+t-1+t-1=0 soit 3t-2=0. Donc $t=\frac{2}{3}$. Ainsi I a pour coordonnées $\left(\frac{2}{3};\frac{2}{3};\frac{1}{3}\right)$

- **c.** le vecteur \overrightarrow{EI} a pour coordonnées : $\begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} \\ -\frac{2}{3} \end{pmatrix} \text{ donc } EI = \sqrt{3 \times \frac{4}{9}} = \frac{2\sqrt{3}}{3}$
- a. En prenant les coordonnées des vecteurs \overrightarrow{BG} , \overrightarrow{BD} et \overrightarrow{DG} on montre que ces trois longueurs sont **5**. égale à $\sqrt{2}$
 - **b.** La hauteur d'un triangle équilatéral est égal à $\frac{\sqrt{3}}{2}c$ où c est la longueur du coté, cela se montre facilement avec le théorème de Pythagore ou les formules de trigonométrie.

Donc l'aire du triangle BDG est $\mathcal{A} = \frac{b \times h}{2} = \frac{1}{2} \times \frac{\sqrt{3}}{2} \times \sqrt{2} \times \sqrt{2} = \frac{\sqrt{3}}{2}$

6. $V = \frac{1}{3} \times \mathcal{B} \times EI = \frac{1}{3} \times \frac{\sqrt{3}}{2} \times \frac{2\sqrt{3}}{3} = \frac{1}{3}$